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Abstract
The super-algebraic structure of a generalized version of the Jaynes–Cummings
model is investigated. We find that a Z2 graded extension of the so(2,1) Lie
algebra is the underlying symmetry of this model. It is isomorphic to the
four-dimensional super-algebra u(1/1) with two odd and two even elements.
Differential matrix operators are taken as realization of the elements of the
superalgebra to which the model Hamiltonian belongs. Several examples with
various choices of superpotentials are presented. The energy spectrum and
corresponding wavefunctions are obtained analytically.

PACS numbers: 03.65.Ge, 11.30.Pb, 42.50.−p, 02.20.Sv

1. Introduction

The Jaynes–Cummings (JC) model is a simple model for the description of one-photon
exchange with a two-level atomic system [1]. The model has been the focus of extensive studies
in the literature [2]. Its simplicity allows exact analytic application of the fundamental laws of
quantum electrodynamics. Moreover, its exact solvability in the rotating wave approximation
exhibits interesting quantum mechanical effects such as the collapses and revivals of Rabi
oscillations [3]. These effects have important applications in optical communication [4] and
laser trapping and cooling of atoms [5]. It enables one to study, in a simple but realistic way,
not only the coherent properties of the quantized field, but also its influence on atoms (e.g.,
collapses and revivals [6], squeezing [7], the interaction of a trapped ion with a laser field
[8], etc). The JC model has been the subject of many generalizations including multi-level
and multi-mode systems [9], intensity-dependent and time-dependent coupling [10]. It was
also generalized using the methods of supersymmetric quantum mechanics where the usual
creation and annihilation operators of the harmonic oscillator become generalized creation
and annihilation operators satisfying the supersymmetric algebra [11]. Applications of the
supersymmetric approach to the JC model, including representation theory of super-algebras,
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have opened large venues for the exact solvability of the model. In fact, as will be demonstrated
here, the supersymmetric JC Hamiltonian is an element of the u(1/1) superalgebra [12].
Additionally, shape invariance studies of bound state problems for two-level systems also
lead to generalized JC models [11]. In the case of exact resonance, the u(1/1) dynamical
superalgebra reduces to N = 2 supersymmetric algebra where the JC model coincides with the
supersymmetric harmonic oscillator (the standard JC model).

In the atomic units, the Hamiltonian of the standard JC model is written in terms of
creation and annihilation operators, a† and a, as

HJC = µσ3 + λ(aσ+ + a†σ−) + a†a, (1)

where µ is the frequency of the model (depending on the physical interpretation of the model,
it could also be proportional to the atomic transition frequency or detuning frequency) and λ

is the coupling parameter. {σi} are the three Pauli matrices:

σ3 =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (2)

Using the usual realization of creation and annihilation operators, we write

a† = d

dx
+ ρx, a = − d

dx
+ ρx, (3)

where ρ is proportional to the square of the mode frequency. Therefore, we can write the JC
Hamiltonian (1) explicitly as follows:

HJC =
(

µ + ρ λ
(
ρx − d

dx

)
λ

(
ρx + d

dx

) −µ + ρ

)
− d2

dx2
+ ρ2x2. (1′)

In this work, we exploit the (super-) symmetry of a generalized version of the JC model and
obtain some of its relevant and interesting analytic solutions. We show that this generalized
model carries a representation of a superalgebra which is a Z2 graded extension of the so(2,1)
Lie algebra. This superalgebra was introduced in [13] while searching for solutions of the
Dirac equation where we found that the ‘canonical form’ of the Dirac Hamiltonian is an
element of this superalgebra. Moreover, it is isomorphic to u(1/1) Lie superalgebra [12].
Most of earlier work on the analytic solutions of the two-level JC model was limited to the
underlying symmetries associated with N = 2 supersymmetry, su(2) or su(1,1) symmetry.
Moreover, the superpotentials used in the supersymmetric studies were very limited. Here,
as well, we will not be able to exhaust all possibilities but give several exact solutions for
interesting and nontrivial superpotential examples. Now, so(2,1) algebra is a three-dimensional
Lie algebra with basis elements satisfying the commutation relations [L3, L±] = ±L± and
[L+, L−] = −L3. It is very useful and highly important in various physical applications, and in
the solution of many three-parameter problems. It has been studied extensively in the literature
as a potential algebra and spectrum-generating algebra for several problems. Following Kac
and others [14], we define a superalgebra G as the Z2 graded algebra G = G0 + G1 with a
product operation ◦ satisfying p ◦ q = −(−1)σ(p,q)q ◦ p, where σ (p, q) = deg(p) × deg(q)
and deg(p) = m ↔ p ∈ Gm, m = 0 or 1. An element of G is called even (odd) if it belongs
to G0 (G1). We call the anti-symmetric product operation ◦ which involves an even element
the commutator and designate it by [ , ] while the symmetric operation that involves only odd
elements is called the anti-commutator, and is designated by { , }. The Z2 grading of so(2,1) Lie
algebra of concern to us is a four-dimensional super-algebra, with two odd elements L± and
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two even elements, L0 and L3, satisfying the commutation/anticommutation relations [13]:

[L3, L±] = ±L±, {L+, L−} = L0, [L0, L3] = [L0, L±] = 0, (4)

where L
†
± = L∓, which implies hermiticity of the even operators (i.e., L†

0 = L0 and L
†
3 = L3).

These relations also show that L0 belongs to the centre of the superalgebra since it commutes
with all of its elements. Additionally, this superalgebra has a second-order Casimir invariant
operator, which could be written as

C2 = L0L3 + L−L+. (5)

This algebra is, in fact, isomorphic to the u(1/1) superalgebra [12]. In the present settings,
we are not concerned with the general representations of this superalgebra. We will only be
interested in a special realization of its elements. These are 2 × 2 matrices of differential
operators acting in a two-component L2 function space with elements χ(x) = (φ+

φ−
)
:

L± = σ±

[
W(x) ∓ d

dx

]
, L3 = 1

2
σ3, (6)

where W(x) is a real differentiable function (the ‘superpotential’). Using the anti-commutation
relation in (4) we obtain

L0 =
(

− d2

dx2 + W 2 − W ′ 0

0 − d2

dx2 + W 2 + W ′

)
, (7)

where W ′ = dW/dx. In this representation, the Casimir operator (5) is not independent but,
in fact, we obtain C2 = 1

2L0. The odd operators L± are the raising and lowering (creation
and annihilation) operators in a two-component Hilbert space. They are first order in the
derivatives, whereas the even operators are zero and second order. L3 is the helicity/parity
operator. Now, since L0 is in the centre of the algebra, then its eigenvalue is an invariant
and we can write L0|χ〉 ∼ |χ〉. Therefore, one can interpret the diagonal elements of
L0 as Schrödinger operators resulting in the identification of the two potential functions
W 2 ± W ′. In supersymmetric quantum mechanics these are the two isospectral (i.e., having
the same spectrum) superpartner potentials. If a linear operator H belongs to this superalgebra
(i.e., carries a representation of the super-symmetry), then H could be expanded as a linear
combination of these four basis elements as follows:

H = α3L3 + α+L+ + α−L− + α0L0, (8)

where α’s are constant parameters. Requiring that this operator be hermitian gives α∗
± = α∓,

α∗
0 = α0 and α∗

3 = α3, which yields

H =
(

µ λ
(
W − d

dx

)
λ

(
W + d

dx

) −µ

)
+

(
− d2

dx2 + W 2 − W ′ 0

0 − d2

dx2 + W 2 + W ′

)
, (9)

where λ = α±, µ = 2α3 and α0 = 1. Since L0 commutes with H, then a two-component
representation, χ , could be found such that H |χ〉 ∼ |χ〉 and L0|χ〉 ∼ |χ〉. Requiring that
H be linear in the derivatives makes α0 = 0 and results in H being identical to the Dirac
Hamiltonian (in the relativistic units h̄ = c = 1) for a spinor of mass µ coupled to the
pseudo-scalar potential W(x) and with λ = 1 [13]. This case will be discussed briefly below.

The two-parameter Hamiltonian in (8) or (9) could be considered as a generalized version
of the JC Hamiltonian (1) which is rewritten as

H = µσ3 + λ(Aσ+ + A†σ−) + A†σ−Aσ+ + Aσ+A
†σ−. (10)

One of the two sources of generalizations in the model is the replacement of the linear
function ρ x in the creation and annihilation operators by W(x). That is, A† = d

dx
+ W(x) and
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A = − d
dx

+W(x).1 In other words, the oscillating electromagnetic wave is replaced by a general
bosonic field depicted by the superpotential W(x). The spectral (Fourier) decomposition of
this superpotential gives the oscillation modes of this multi-mode JC model. Moreover, since
A†A = − d2

dx2 + W 2 + W ′ and AA† = − d2

dx2 + W 2 − W ′, then neither of the two superpartner
potentials W 2 ± W ′ should assume precedence over the other. Consequently, A A† as well
as A†A are included in the Hamiltonian, which is the source of the second generalization in
the model. Variations of this two-level generalized JC model have already been treated in the
literature (see, for example, [9–12]). However, analytic solutions were obtained for only a very
limited selection of superpotentials, W(x). Now, we choose a two-component representation
χ = (φ+

φ−
)

parameterized by the two real eigenvalues of L0 and H as follows:

L0|χ〉 = ω|χ〉, and H |χ〉 = ε|χ〉. (11)

Using the explicit realization of these operators in equations (7) and (9) we obtain

(
− d2

dx2
+ W 2 ∓ W ′

)
φ±(x) = ωφ±(x), (12)

(
µ + ω λ

(
W − d

dx

)
λ

(
W + d

dx

) −µ + ω

)(
φ+

φ−

)
= ε

(
φ+

φ−

)
. (13)

Equation (13) gives, and is equivalent to, the ‘kinetic balance’ relation:

φ∓ = λ

ε − ω ± µ

(
W ± d

dx

)
φ±, (13′)

where ε 	= ω ∓ µ, respectively. Compatibility of equation (12) and (13′) results in the
following relation between the two eigenvalues ω and ε:

ε = ω ±
√

µ2 + λ2ω, (14)

where ω � −(µ/λ)2 is required for the reality of the representation.
There is an interesting relation between this model and the Dirac Hamiltonian. The author

and co-workers are currently investigating this relation [15]. It might be instructive to give
a very brief outline of this relation as follows. In the relativistic units (h̄ = c = 1) the one-
dimensional Dirac Hamiltonian with coupling to vector, scalar, and pseudo-scalar potentials
reads as follows:

HD =
(

m + V + S − d
dx

+ W

d
dx

+ W −m + V − S

)
, (15)

where V(x) is the vector potential, S(x) the scalar potential, and W(x) is the pseudo-scalar2.
Taking V = S = 0 and the two-component spinor as ψ = (φ+

φ−
)
, then the Dirac equation

(HD − E)ψ = 0 gives φ∓ = 1
E±m

(
W ± d

dx

)
φ± and(

− d2

dx2 + W 2 − W ′ 0

0 − d2

dx2 + W 2 + W ′

)(
φ+

φ−

)
= (E2 − m2)

(
φ+

φ−

)
, (16)

1 One could think of these as conventional creation and annihilation operators in a new configuration space with
coordinate y(x) (i.e., ± d

dy
+ ρy) with W(x) = ρy(dy/dx).

2 If W(x) could be written as κ
x

+ U(x) with κ = ±1,±2, . . . , then HD could also be interpreted as the Dirac
Hamiltonian in three dimensions with spherical symmetry, where x ∈ [0,∞] is the radial coordinate, κ stands for the
spin–orbit quantum number, and U(x) is the radial pseudo-scalar potential.
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where E is the relativistic energy. Thus, the Dirac Hamiltonian (15) with V = S = 0 is
equivalent to the generalized JC Hamiltonian (9) with µ = m and λ = 1. This is so, because
the difference between them (H − HD) in the solution space is only a constant, E2 − m2.

Next, we present several nonrelativistic examples of the model (10). The original JC
model where W(x) is linear in x, which has been studied extensively in the literature, will not
be discussed. For the benefit of the reader, we give in the appendix details of the method of
solution for one of the examples.

2. Examples

In this section, we present several examples for the generalized model (10) each of which is
associated with a given choice of the ‘superpotential’ function W(x). The energy spectrum of
the bound states and the corresponding two-component wavefunction are obtained analytically.
Our method of solution goes as follows. A coordinate transformation y(x) to a new
configuration space y ∈ [y−, y+] ⊆ � is carried out. In the new space, we propose the
following two components of the wavefunction:

φ±(x) = A±�±(y)f±(y), (17)

where A± are the normalization constants, �±(y) is the weight function that forces
compatibility with the boundary conditions, and f±(y) is chosen to be the hyper-geometric or
confluent hypergeometric series. We require that the series terminates so that the wavefunction
is normalizable by being square integrable (i.e., the integral

∫ y+

y−
1
y ′ [�±(y)f±(y)]2 dy is finite).

Substituting (17) into (12) gives

[
− d2

dy2
−

(
y ′′

y ′2 + 2
�′

±
�±

)
d

dy
− �′′

±
�±

− y ′′

y ′2

(
�′

±
�±

)
+

W 2

y ′2 ∓ W ′

y ′ − ω

y ′2

]
f±(y) = 0, (18)

where the primes on y stand for the derivative with respect to x whereas other primes (on �±
and W) mean the derivative with respect to y. It was assumed that �±(y) is regular on the
interval [y−, y+]. Equation (13) or its equivalent, the kinetic balance relation (13′), determines
the relative normalization of the two components of the wavefunction, A+/A−. Now, we will
be considering transformations to two types of configuration spaces: a bounded one where
y ∈ [−1, +1], and a semi-infinite one where y ∈ [0,∞]. The weight function for the former
is �±(y) = (1 − y)α±(1 + y)β± whereas for the latter it is taken as �±(y) = yα± e−β±y , where
appropriate conditions are imposed on the real parameters α± and β± (mostly, being positive).
These weight functions force the wavefunction to vanish at the boundary since f±(y) is regular
there. Requiring that f±(y) be hypergeometric in the former case dictates that the term y ′′/y ′2

multiplying the first-order derivative in equation (18) be the ratio of a linear function in y
divided by 1 − y2. This is satisfied by taking y(x) to be a hyperbolic function (e.g., tanh τx,
cosh τx, sech τx, etc). On the other hand, for the latter case where f±(y) is the confluent
hypergeometric function, y ′′/y ′2 must be the sum of a constant and a term proportional to
y−1. This could be accomplished by taking y to be a monomial yτ , an exponential e−τx , or
logarithmic ln τx. To select the appropriate superpotential W(y) and to fix the real parameter
τ in y(x) we require that the terms in equation (18) without derivatives to be the same as those
in the differential equation of the (confluent-) hypergeometric function, respectively. Putting
all elements of this strategy for the analytic solution together, we end up with few possibilities
some of which are chosen as examples in the following subsections.
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2.1. Inverse linear superpotential

In this case: W(x) = κx−1 + γ , y(x) = τx, x ∈ [0,∞] and �±(y) = yα± e−β±y , where κ and
γ are real and τ positive. Therefore, the physical parameters of the model are {µ, λ, κ, γ }.
The resulting differential equation (18) becomes{

− d2

dy2
− 2

(
α±
y

− β±

)
d

dy
+

1

y2

[(
κ ± 1

2

)2

−
(

α± − 1

2

)2
]

+ 2
α±β± + κγ /τ

y
− β2

± +
γ 2 − ω

τ 2

}
f±(y) = 0. (19)

Comparing this with the differential equation of the confluent hypergeometric series
1F1(a±; c±; y) [16], we obtain

β± = 1

2
, τ = 2

√
γ 2 − ω, α± = |κ| +

1

2

(
1 ± κ

|κ|
)

=
{
κ + (1 ± 1)/2, κ > 0
−κ + (1 ∓ 1)/2, κ < 0,

(20a)

c± = 2α±, a± = α± + 2κγ /τ . (20b)

Reality of the solution puts a stronger constraint on ω, the eigenvalues of L0, which is that
γ 2 > ω � −(µ/λ)2. For bound states, square integrability requires that the confluent
hypergeometric series 1F1(a±; c±; y) terminate. This is accomplished by choosing a± to be a
negative integer or zero [16]. Imposing this requirement on the solutions in (20) restricts ω to
be an element of the following infinite discrete set,

ωn = γ 2

[
1 −

(
κ

n + |κ|
)2

]
, (21)

where n = 0, 1, 2, . . . . Moreover, it also dictates that bound state solutions are possible only if
the physical parameters κ and γ are of opposite sign (i.e., γ κ < 0). These discrete values of ω

conform to the requirement of reality of the representation, which is that γ 2 > ωn � −(µ/λ)2.
In fact, equation (21) shows that γ 2 > ωn � 0. Now, for a given n (i.e., for a given ωn), we
obtain a± = −n + 1

2 (1 ± κ/|κ|). Inserting ωn for ω in equation (14) gives the bound states
energy spectrum {εn}∞n=0. The corresponding components of the wavefunction are

φ+
n (x) = A+

n e−τnx/2

{
(τnx)κ+1

1F1(−n + 1; 2κ + 2; τnx), κ > 0

(τnx)−κ
1F1(−n;−2κ; τnx), κ < 0,

(22a)

φ−
n (x) = A−

n e−τnx/2

{
(τnx)κ 1F1(−n; 2κ; τnx), κ > 0

(τnx)−κ+1
1F1(−n + 1;−2κ + 2; τnx), κ < 0,

(22b)

where τn = 2
√

γ 2 − ωn = 2|γ κ|/(n + |κ|) and n = 1, 2, 3, . . . . Ground state is the lowest
energy state, which is obtained from equations (22) by setting n = 0 (i.e., ω = 0 and ε = ±|µ|)
and requiring normalizability:

χ0(x) = A−
0 eγ x(−2γ x)κ

(
0
1

)
, κ > 0 (23a)

χ0(x) = A+
0 e−γ x(2γ x)−κ

(
1
0

)
, κ < 0 (23b)
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2.2. Exponential superpotential

In this case: W(x) = κ e−τx + γ , y(x) = e−τx , x ∈ [−∞, +∞] and �±(y) = yα± e−β±y ,
where κ and γ are real and τ positive. The physical parameters of the model are {µ, λ, κ, τ, γ }
and the differential equation (18) becomes{

− d2

dy2
−

(
2α± + 1

y
− 2β±

)
d

dy
− α2

± + (ω − γ 2)/τ 2

y2

+
β±(2α± + 1) + (2κγ /τ 2) ± (κ/τ)

y
− β2

± +
κ2

τ 2

}
f±(y) = 0. (24)

Comparing this with the differential equation of the confluent-hypergeometric series
1F1(a±; c±; y), we obtain

β± = 1

2
, τ = 2|κ|, α± = 1

2|κ|
√

γ 2 − ω ≡ α, (25a)

c± = 2α + 1, a± = α +
1

2

γ

κ
+

1

2

(
1 ± κ

|κ|
)

. (25b)

Thus, the physical parameters are reduced by one to {µ, λ, κ, γ }. Reality of the representation
requires that γ 2 > ω � −(µ/λ)2. Moreover, it is easy to note that a± = a∓ + 1 for ±κ > 0.
Again, to obtain normalizable bound states the confluent hypergeometric series must terminate.
This requires that a± be a negative integer or zero and that bound state solutions are possible
only if the physical parameters κ and γ are of opposite signs (i.e., γ κ < 0). Consequently,
the eigenvalue ω becomes an element of the following discrete set:

ωn = γ 2 − 4κ2
(
n − 1

2 |γ /κ|)2
, (26)

where n = 0, 1, . . . , N and N is the largest integer that satisfies N � 1
2 |γ /κ|. Thus, the reality

requirement of the representation, γ 2 > ωn � −(µ/λ)2, is automatically satisfied since, in
fact, γ 2 > ωn � 0. Substituting ωn for ω in equation (14) gives the finite bound states energy
spectrum {εn}Nn=0. The corresponding two components of the wavefunction are

φ+
n (x) = A+

n exp

(
−1

2
e−2|κ|x

)
e−2|κ|αnx

{
1F1(−n + 1; 2αn + 1; e−2κx), κ > 0

1F1(−n; 2αn + 1; e2κx), κ < 0,
(27a)

φ−
n (x) = A−

n exp

(
−1

2
e−2|κ|x

)
e−2|κ|αnx

{
1F1(−n; 2αn + 1; e−2κx), κ > 0

1F1(−n + 1; 2αn + 1; e2κx), κ < 0,
(27b)

where αn = 1
2|κ|

√
γ 2 − ωn = 1

2

∣∣ γ

κ

∣∣ − n and n = 1, 2, . . . , N . The lowest energy state is
obtained from equations (27) by setting n = 0 (i.e., ω = 0 and ε = ±|µ|) and requiring
normalizability. It reads as follows:

χ0(x) = A−
0 exp

(
−1

2
e−2κx

)
eγ x

(
0
1

)
, κ > 0 (28a)

χ0(x) = A+
0 exp

(
−1

2
e2κx

)
e−γ x

(
1
0

)
, κ < 0. (28b)
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2.3. Hyperbolic superpotentials

For this case we take: W(x) = κ tanh(τx) + γ , y(x) = tanh(τx), x ∈ [−∞, +∞] and
�±(y) = (1 − y)α±(1 + y)β± , where κ and γ are real and τ positive. Therefore, the physical
parameters of the model are {µ, λ, κ, τ, γ } and the differential equation (18) becomes{

(1 − y2)
d2

dy2
− 2[α± − β± + y(α± + β± + 1)]

d

dy

− (
β2

± − α2
± + κγ /τ 2

) 2y

1 − y2
+ 2

α2
± + β2

±−(κ2 + γ 2 − ω)/2τ 2

1 − y2

−
(

α± + β± +
1

2

)2

+

(
κ

τ
± 1

2

)2
}

f±(y) = 0. (29)

Comparing this with the differential equation of the hypergeometric series 2F1
(
a±, b±;

c±; 1+y

2

)
[16], we obtain

α± = 1

2τ

√
(κ + γ )2 − ω ≡ α, β± = 1

2τ

√
(κ − γ )2 − ω ≡ β, (30a)

c± = 2β + 1,

(
α + β +

1

2
− a±

)2

=
(

κ

τ
± 1

2

)2

, b± = 2

(
α + β +

1

2

)
− a±.

(30b)

To simplify the solution (without too much loss of generality) we choose γ = 0. Thus, the
physical parameters of the model are reduced to {µ, λ, κ, τ } and equation (30) gives

α = β = 1

2τ

√
κ2 − ω, c± = 2α + 1, (30a′)

(
2α +

1

2
− a±

)2

=
(

κ

τ
± 1

2

)2

, b± = 4α + 1 − a±. (30b′)

Reality of the representation requires that κ2 > ω � −(µ/λ)2. To obtain normalizable
bound states the hypergeometric series 2F1

(
a±, b±; c±; 1+y

2

)
must terminate. This requires

that either a± or b± be a negative integer or zero. Due to the exchange symmetry a± ↔ b± in
2F1

(
a±, b±; c±; 1+y

2

)
we choose a± to meet this requirement. Consequently, ω assumes the

following discrete values:

ωn = κ2 − τ 2(n − |κ|/τ)2, (31)

where n = 0, 1, . . . , N and N is the largest integer that is less than or equal to |κ|/τ . Thus,
the reality requirement of the solution is satisfied since κ2 > ωn � 0. Moreover, we obtain
a− = a+ + κ

|κ| and the following parameters of the hypergeometric series:

a± = −n +
1

2

(
1 ∓ κ

|κ|
)

, b± = a∓ + 2|κ|/τ , c± = −n + 1 + |κ|/τ . (32)

Substituting ωn from equation (31) for ω in equation (14) gives the finite bound states energy
spectrum {εn}Nn=0. The corresponding two components of the wavefunction are

φ+
n (x)= A+

n(cosh τx)n−|κ|/τ




2F1

(
−n, 2

κ

τ
− n + 1; κ

τ
− n + 1; 1

2
+

1

2
tanh τx

)
, κ > 0

2F1

(
−n + 1,−2

κ

τ
− n;−κ

τ
− n + 1; 1

2
+

1

2
tanh τx

)
, κ < 0,

(33a)
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φ−
n (x)= A−

n (cosh τx)n−|κ|/τ




2F1

(
−n + 1, 2

κ

τ
− n; κ

τ
− n + 1; 1

2
+

1

2
tanh τx

)
, κ > 0

2F1

(
−n,−2

κ

τ
− n + 1;−κ

τ
− n + 1; 1

2
+

1

2
tanh τx

)
, κ < 0,

(33b)

where n = 1, 2, . . . , N . The lowest energy state is obtained from equations (33) by setting
n = 0 (i.e., ω = 0 and ε = ±|µ|) and requiring normalizability giving

χ0(x) = A+
0(cosh τx)−κ/τ

(
1
0

)
, κ > 0 (34a)

χ0(x) = A−
0 (cosh τx)κ/τ

(
0
1

)
, κ < 0. (34b)

Finally, there is an interesting and highly nontrivial example that belongs to this class of
superpotentials. This is when W(x) = κ coth(τx) + γ csch(τx), where κ and γ are real
and τ positive. Configuration space is the semi-infinite real line, x ∈ [0,∞], and the weight
function is �±(y) = (y − 1)α±(y + 1)−β± , where y = cosh(τx) and β± � α± > 0. We give
the energy spectrum and wavefunctions without details of the calculation. The case γ = κ

does not result in bound states whereas γ = −κ does but only if |κ| � τ/2 and then it has
a simpler solution. Therefore, we give results for the general case but only when γ 	= ±κ .
Bound states are possible only if the superpotential parameters satisfy the conditions

γ κ < 0, |γ | > |κ| � τ. (35)

Following the same method used above, we obtain the following:

ωn = κ2 − τ 2(n − |κ|/τ)2, (36)

where n = 0, 1, . . . , N and N is the largest integer satisfying

N � |κ|
τ

[
1 +

√
1 + (µ/λκ)2

]
. (37)

Equations (36) and (37) show that as n increases so does ωn which starts at ω0 = 0, reaches
a maximum at or below κ2 (when n becomes the largest integer less than or equal to |κ|/τ ),
then decreases towards the minimum ωN � −(µ/λ)2 while going through zero. Thus,
κ2 � ωn � −(µ/λ)2, which guarantees reality of the solution. The finite bound states energy
spectrum {εn}Nn=0 is obtained by substituting ωn for ω in equation (14). The corresponding
components of the wavefunction are

φ+
n (x) = A+

n(cosh τx − 1)|�|/2(cosh τx + 1)−|�|/2

×




2F1

(
−n, n − 2κ/τ ;−2n +

1

2
;− sinh2 τx

2

)
, κ > 0

(sinh τx)2F1

(
−n + 1, n + 1 + 2κ/τ ;−2n +

5

2
;− sinh2 τx

2

)
, κ < 0,

(38a)

φ−
n (x) = A−

n (cosh τx − 1)|�|/2(cosh τx + 1)−|�|/2

×




(sinh τx)2F1

(
−n + 1, n + 1 − 2κ/τ ;−2n +

5

2
;− sinh2 τx

2

)
, κ > 0

2F1

(
−n, n + 2κ/τ ;−2n +

1

2
;− sinh2 τx

2

)
, κ < 0,

(38b)
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where � = (γ + κ)/τ , � = (γ − κ)/τ and n = 1, 2, . . . , N . The lowest energy state is
obtained from equations (38) by setting n = 0 and requiring normalizability giving

χ0(x) = A+
0(cosh τx − 1)|�|/2(cosh τx + 1)−|�|/2

(
1
0

)
, κ > 0 (39a)

χ0(x) = A−
0 (cosh τx − 1)|�|/2(cosh τx + 1)−|�|/2

(
0
1

)
, κ < 0. (39b)

3. Conclusion

In this work, we have shown that the generalized JC Hamiltonian model given by equation (10)
is endowed with a high degree of (super-) symmetry, which we have exploited to obtain analytic
solutions of various interesting examples of the model. The underlying dynamical symmetry
is associated with a special four-dimensional super-algebra defined by equation (4). It is a
Z2 graded extension of su(1,1) Lie algebra which is isomorphic to the superalgebra u(1/1).
A special realization of the generators of this superalgebra was employed. This realization is
suitable for the description of the interaction of a bosonic field, depicted by W(x), with a two-
level atomic system whose effective mass (frequency) is µ. The coupling strength is given
by λ. Several examples with different field configurations were given. Analytic solutions
(energy spectrum and state functions) were obtained. A connection between this generalized
JC model and the Dirac Hamiltonian with pseudo-scalar potential coupling was indicated.
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Appendix

Following the recommendations of one of the referees and as a benefit to the reader, we
outline the method of solution (obtaining the energy spectrum and associated wavefunctions)
for the supersymmetric JC model example given in subsection 2.2. The superpotential in
this case is W(x) = κ e−τx + γ , where κ and γ are real and τ positive. The configuration
space x is the whole real line, x ∈ [−∞, +∞]. In terms of the new variable y, where
y = e−τx ∈ [0,∞], the weight function �±(y) that forces compatibility with the boundary
conditions [i.e., φ±(0) = φ±(∞) = 0] is �±(y) = yα± e−β±y with the real parameters
α± and β± positive. Substituting this weight function in the wave equation (18) results
in the second-order differential equation (24) for f±(y), where φ±(x) = A±�±(y)f±(y).
This differential equation could be identified with that of the confluent hypergeometric
series,

[
y d2

dy2 + (c± − y) d
dy

− a±
]

1F1(a±; c±; y) = 0, provided that the parameters of the
problem satisfy the set of conditions in equations (25a) and (25b). Moreover, normalizability
requirement [i.e., f±(y) be a finite polynomial in y] dictates that the series 1F1(a±; c±; y)

must terminate. This is possible only if a± is a negative integer or zero and that if c± also
happens to be a negative integer then we must have |c±| > |a±|. Writing a± = −n±,
where n± = 0, 1, 2, . . . , and requiring that the eigenvalue ω be the same for both φ+

and φ−, then relations (25a) and (25b) show that n∓ = n± + 1 for ±κ > 0. Moreover,
bound state solutions are possible only if α > 0. This dictates by use of relation (25b),
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α = −n± − 1
2

(
1 ± κ

|κ|
) − 1

2
γ

κ
= −n − 1

2
γ

κ
, that the physical parameters κ and γ are of

opposite signs (i.e., γ κ < 0) and that 0 � n � 1
2 |γ /κ|. Therefore, we obtain with these

constraints the discrete values of ω as a function of n shown in equation (26). Consequently,
with all real parameters {α±, β±, a±, c±} and range of the spectrum index n determined,
we can write the two components of the bound states wavefunction as shown in (27a) and
(27b). The corresponding energy spectrum, {εn}Nn=0, is easily obtained by substituting ωn from
equation (26) for ω in equation (14). The lowest energy bound states are obtained from (27a)
and (27b) by taking n = 0 and the normalization constants A±

0 = 0 for ±κ > 0. The
latter requirement is necessary since otherwise the series 1F1(1; 1 + |γ /κ|; e−2|κ|x) does not
terminate resulting in non-normalizable states.
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